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We demonstrate the viability of distributed computing techniques employing idle desktop computers

in investigating complex structural problems in solids. Through the use of a combined Monte Carlo and

energy minimisation method, we show how a large parameter space can be effectively scanned. By

controlling the generation and running of different configurations through a database engine, we are

able to not only analyse the data ‘‘on the fly’’ but also direct the running of jobs and the algorithms for

generating further structures.

As an exemplar case, we probe the distribution of Al and extra-framework cations in the structure of

the zeolite Mordenite. We compare our computed unit cells with experiment and find that whilst there

is excellent correlation between computed and experimentally derived unit cell volumes, cation

positioning and short-range Al ordering (i.e. near neighbour environment), there remains some

discrepancy in the distribution of Al throughout the framework. We also show that stability–

structure correlations only become apparent once a sufficiently large sample is used.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

Many of the physicochemical properties of solids that can be
technologically exploited, such as catalytic, conductivity and
optical properties, depend on the details of the structure, both
local and long range. Many such properties arise from the
presence and distribution of defects within the material. Thus,
in the field of catalysis, many active sites are known to be defect
centres such as low coordinated surface sites, vacancies or
interstitials. More generally, key properties may be determined
by the nature of the disorder of specific atoms within the host
lattice. Thus, the distribution of metal cations at different lattice
sites in a perovskite-structured material can influence, for exam-
ple, the ion conductivity and the magnetic properties of the
material. Such materials, containing only two cation sites, can
be considered a simple case. More generally, the ability to
characterise accurately the distribution of different configurations
is often limited, in the first instance by experimental techniques
and secondly by the very large number of potential configurations
that would need to be calculated. Whilst computational methods,
particularly Monte Carlo (MC) methods can be successful in
modelling such complex systems, they are often limited by the
ll rights reserved.
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number of different configurations that can be considered and by
the fact that the critical local relaxations within the structure are
often neglected. However, we do note the substantial progress
made by Allan and co-workers who have developed a hybrid
Monte Carlo method that is effective in modelling disorder in
dense oxide materials [1]. Similarly, we note methods that allow
the constriction of all possible, crystallographically distinct solid
solution configurations [2].

The focus of this paper will be cation and aluminium distribu-
tions in zeolites—a key class of materials, whose application in
catalysis, gas separation and ion-exchange is directly related to the
distribution of atoms within a crystalline lattice. These crystalline
microporous aluminosilicates comprise networks of channels and
cavities, commensurating in size (4–10 Å) with small molecules that
give rise both to size and shape selectivity in their use as catalysts
and to their molecular sieving properties. The active sites in such
materials arise from the presence of aluminium within what
otherwise can be considered a silica framework: each Al, substitut-
ing for Si, requires the presence of a cationic species to preserve
charge neutrality. In natural and many synthetic materials, the
charge compensation is initially provided by alkali metal cations,
typically sodium, present as loosely bound species within the pores
of the material. For catalytic applications, these cations are often
exchanged and replaced by protons, which bind to a bridging
oxygen (between a Si and Al) forming a very strong Brønsted acid
centre. But regardless of the method of preparation, or the end use,
the precise distribution of the Al within the framework and hence
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the extra-framework species is established during the crystallisation
process. But what controls the atomic distribution and is it possible
to characterise accurately this distribution? Furthermore, can we
identify those parameters that may allow us to control the distribu-
tion to such an extent as to allow the optimisation of (for example)
catalytic activity within a zeolitic material?

Central to all these questions, is our ability to model such
structures and calculate their relative stability. We therefore,
require a methodology that can first of all construct chemically
reasonable structures and then evaluate the relative stability of
each of these configurations, the numbers of which can be very
large for disordered systems. Monte Carlo methods are naturally
suited to generating ensembles of configurations and have proven
valuable in such problems. However, it may be difficult in some
cases for such methods to allow for structural relaxation for all
configurations. For example, when considering systems with
cation disorder (such as zeolites), MC moves will involve swap-
ping pairs of atoms but may not include considerations of how
the lattice surrounding these atoms relaxes to accommodate such
a change. In the case of flexible structures such as zeolites, where
incorporation of Al into the framework is readily accommodated
and where the open nature of the pores means that the charge-
compensation extra-framework cations are mobile, such local
relaxations will have a considerable influence on the stability of
a particular configuration. Note, these changes are to some extent
more complex than in dense systems where relaxations are
usually highly symmetric [1]. The structural rearrangement
becomes critical as the number of Al and cations increases. For
example, the presence of a single Al in the framework will be
compensated by a cation that will coordinate directly to the
oxygen atoms adjacent to the Al. However, when multiple Al sites
are close together, it becomes more difficult to envisage how to
incorporate multiple cations within the pores of the material
[3,4].

One possible solution is to perform a full energy minimisation
calculation on each configuration. However, it soon becomes clear
that such an approach involves excessive and possibly unfeasible
computational expense, as the configurational space here is vast.
For example, a typical loading of aluminium (Si:Al¼11) and
extra-framework cations in a single crystallographic unit cell of
Mordenite gives a theoretical number of unique configurations
exceeding ca.1013, although many of these will be symmetrically
equivalent [5,6]. To evaluate simply the energetics of such a
sample is costly; to perform optimisation requires a huge increase
in resource. However, limiting the degrees of freedom and
performing only a limited optimisation can considerably reduce
the computational expense. Furthermore, if we are able to
deduce, from experience, particular geometries that lead to either
low or high energy configurations, we may be able to focus our
search of parameter space only to those configurations of interest.

Recently, the advent of distributed computing strategies has
brought about a potential step-change in approaching problems
where large configurational space has to be considered. Such
methods typically take advantage of ‘‘free’’ CPU cycles on desktop
PCs: successful examples include climateprediction.net and
Richards’ drug discovery screensaver [7]. Thus, one can envisage
a strategy whereby configurations are generated and then opti-
mised and evaluated on a large number of distributed computers.
However, such an approach does little to improve the methodol-
ogy; we are simply exploiting a larger number of computer
resources. A far more profitable approach is to develop a strategy
where the results of optimised structures can be used to steer
subsequent configuration generation or where optimisations can
be modified according to progress. The large configurational space
that can now be considered also leads to problems of data
management. Relational databases (such as MySQL [8]) allow us
not only to store data but also to retrieve and analyse selected
configurations based on search criteria. Thus by developing
analysis tools (e.g. geometry analysis) that store data in such
databases, we increase our ability to extract trends within our
results.

As a test case we consider the zeolite Mordenite, widely
utilised as an acid catalyst, which can be formed with a wide
range of Si:Al ratios, with a variety of extra-framework cations.
Previous studies, by Gray et al. [5] and Gray [6], developed and
applied the combined Monte Carlo/energy minimisation (MC/EM)
strategy used here. However, the computational cost of such an
approach, both at the time and even now, if a serial approach is
taken, is limited severely by the number of configurations that
need to be considered. Nevertheless, in general, excellent agree-
ment with experimental data was found. Cation positions (com-
pared with crystallographic data) and local Si–Al distributions
(compared to NMR data) were very well reproduced, as was the
general unit cell geometry. However, some discrepancies were
found in the relative occupation of the various framework sites
(the T-sites that are occupied by either Si or Al). Experimentally,
such (partial) occupations are derived by a long established
method, whereby consideration of the average T–O distance is
an indicator of the Al occupation [9]: increased T–O distances
indicate a higher proportion of Al, although we note more recent
improvements by Alberti and Gottardi [10] and Alberti et al. [11].

We therefore present here the development of a database-
driven methodology for the sampling of aluminium and cation
distributions in zeolites that utilises distributed computing
resources. With the properties in the database we can easily
interrogate for patterns and clustering of properties in order to
improve our knowledge of the zeolite structure and the factors
that control it. Of course, several properties control Al and cation
positions, but with this information we will be able to improve
greatly the efficiency of the MC generation step by including more
rules and more importantly we can pass this vital information to
aid XRD structure refinement.
2. Computational detail

We now give details of the various components of our
distributed computing strategy. Our methodology takes a Monte
Carlo method for the generation of configurations and couples it
to a job submission process that ensures accelerated and
improved convergence of jobs whilst at the same time optimally
loading the distributed computing resource. Job control and
progress, together with the analysis tools (the final component
of our strategy), all utilise database tables to store and manipulate
results.

2.1. Configuration generation

We utilise a Monte Carlo (MC) method to generate the initial
configuration by populating a siliceous framework with Al and
then incorporating the charge compensating cations [5,6]. The
initial framework is obtained by performing a full optimisation of
a supercell, taken from crystallographic data. Thus, for a given
Si:Al ratio, our algorithm first randomly substitutes the required
number of Si atoms with Al. Additional constraints have been
applied, the most useful being that of Lowenstein’s rule [12],
where no Al–O–Al units are permitted. A cation is then inserted to
compensate each Al, by placing it in the same plane as the Al and
two randomly selected oxygens to which the Al is bonded. The
cation–oxygen distance chosen is the average value found in
crystallographic studies of high-silica zeolites [13]. Additional
constraints are included to prevent unreasonable cation–cation
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distances. Each configuration is then output as an unique input
file for our chosen energy minimisation code (in this case GULP)
[14,15]. The energetics of the system are modelled using a well
validated set of interatomic potentials [16,17], within a Born
model of the lattice. The electrostatic contribution is treated using
the Ewald method [18]. Such a potential model, which includes a
description of polarisation of the framework oxygen, has proved
to be reliable in describing the structure of siliceous and alumi-
nosilicates zeolites, over a large compositional range.

2.2. Optimisation strategy

Whilst the MC method described provides reasonable starting
geometries, we must recall that as the Si:Al ratio is reduced, the
perturbation to the structure (local and long-range) becomes con-
siderable. Furthermore, energy minimisation algorithms can only
locate local minima and are often prone to numeric instability if the
initial geometry is too far removed from a low energy configuration.
Thus, simply attempting a full optimisation from such a starting
structure often fails. Previous studies by Gray et al. [5] and Gray [6]
have shown that for zeolites with low Si/Al ratios, where perturba-
tion from the siliceous structure is greatest, conventional ‘‘constant
pressure’’ optimisation (whereby all atom positions and cell para-
meters are optimised together) fail in almost 30% of cases. However,
if a more measured approach is taken, that is a stepwise optimisa-
tion, taking into account now our analysis from this larger sample of
50,000 configurations, many of these configurations can also be
converged. Note, that each optimisation (if successful) takes of the
order of 120 min on a fast Pentium 4 processor and hence a serial
(single queue) approach to such a study would require in excess of
12 years of CPU.

2.3. Database-driven job submission and steering

From the discussion above, it is clear that job management and
submission is key to obtaining a configurational sample of value.
Furthermore, it should be apparent that a simple ‘‘queue and wait’’
approach will severely compromise any queuing system due to the
sheer number of jobs such a system would have to manage. Thus, we
have developed software that will generate configurations according
to user input and store the location of each configuration in
a database. Each of these configurations can then be submitted to a
distributed computing pool. Each job is optimised according to a step-
wise strategy (discussed above), which is also stored in the database.
On completion of each step of the optimisation strategy we can
therefore determine if further submission is required, whether a
particular configuration can be discarded or whether the optimisation
strategy devised requires modification. This approach also allows us
to ‘‘load’’ optimally a distributed computing pool. Any queuing
system will become inefficient as the number of jobs increases. Thus,
whilst it may seem attractive to simply generate a large number of
configurations and submit them all, this strategy will reduce through-
put on such a pool, particularly if many users submit large numbers
of jobs. Similarly, we may wish to accelerate the progress of certain
configurations, based on the results of our analysis, at the cost of
other configurations, which we believe to be less important in the
sample. Thus, we have devised a ‘‘drip-feed’’ strategy, whereby only a
limited number of jobs are sent to the pool at any one time, but at the
same time, we maintain the number of jobs, keeping the pool full,
so as to maximise throughput. The workflow strategy is summarised
in Fig. 1.

2.4. Analysis tools

Configurations are analysed immediately on return from the
computing resource, to determine if they have completed or require
further submission. Incomplete jobs can be assessed as to whether
they will result in unfeasible geometries or are unlikely to converge. If
convergence is likely, these jobs are returned to the job database, with
the input file modified for the next applicable stage of the optimisa-
tion strategy in place. Moreover, a number of key data, e.g. changes in
energy and gradient norm, are stored in the database at each stage,
allowing convergence and other indicators to be constantly moni-
tored and modified. Thus, if a stage in the optimisation strategy is not
found to lead to any significant improvement in convergence, e.g. the
stage is terminated after too few cycles or may have completed early,
the strategy database can be modified to improve the process. The
analysis strategy is summarised diagrammatically in Fig. 2.

Completed jobs, or indeed partially converged jobs, can also be
more fully analysed. In addition to extracting energy and con-
vergence data, we have written a flexible geometry analysis tool,
which enables us to determine and store information on a wide
range of parameters that are also stored in our database environ-
ment. We can now extract NMR data, T-site occupation by
aluminium and cation-oxygen distances as a matter of course.
We can also include comparisons with the cation site positions
from an experimental unit cell and the coordination distances
between specific atoms if required. This level of user-specification
allows us to carry out a very thorough, but general analysis of a
large number of configurations and on the basis of the results
obtained compare some, none or all of the configurations with
experimental cells. The process has been streamlined so that the
user needs only one command line to carry out the complete
analysis of all configurations and input to the database. From the
work described here, using the results obtained with the aid of
the analysis tools, we hope to improve our understanding of the
key factors controlling the structure.

2.5. Condor pools

All the calculations have been performed on a Condor [19] pool at
UCL [20]. The pool consists of approximately 1000 low specification



Interrogation 
of db

Paths to files 
(from db) output 

to txt file

Txt file input for script 
calling analysis 

program for each path

Energy &
Gnorm
within 

desired 
range

No
further 

analysis

No

Yes

Interrogation 
of db

Paths to files 
(from db) output 

to txt file

Txt file input for script 
calling analysis 

program for each path

Energy &
Gnorm
within 

desired 
range

No
further 

analysis

No

Yes

Standard Analysis 
Table Description of Data 
Energy Id, path, initial &, energy, initial & final 

gradient norm, convergence status 
Cell Id, number of atoms, a,b, c, α, β, γ, cell 

volume, number each species, number of 
cations

Cat_O Id, average cation-O distance, average 
cation-O distance, shortest & longest 
cation-O distance 

T_O Id, average T-O distance, average Al/Ai-
O , shortest & longest Al/Si-O 

Angle Id, average T-O-T, min & max T-O-T 
Tsites Id, number of Tsites, occupation and 

percentage occupation of each site 
NMR Id, number of Al with xAl(4-x)Si

neighbours (x=4,3,2,1,0), number of Si 
with xSi(4-x)Al neighbours (x=4,3,2,1,0)

User Specified Analysis 
Boltzmann Boltzmann analysis, probability of 

population of each configuration. 
Comparison Id, label of species to be matched with 

expt. cell, average match distance, max 
& min match distance, number of 
matches match cutoff 

Coordination Id, average coordination, max & min 
coordination, number coordinated 

Fig. 2. Illustration of analysis types available for ‘‘on-the-fly’’ processing of output files. Results can be stored directly in database tables for query construction.

S.A. French et al. / Journal of Solid State Chemistry 184 (2011) 1484–1491 1487
desktop teaching PCs running Windows 2000, which act solely as a
client for a Windows Terminal Server. Typically 90% of CPU cycles
are available even when users are logged on. However, there are
restrictions as to the type of application that suits the Condor
architecture. The resource requirement for each individual job should
be low and not require parallelisation. Ideal applications consist of a
large number of similar size jobs that have slightly different input
parameters. For this study of Mordenite we have performed in excess
of 50,000 calculations for the specific ratio of Si:Al using approxi-
mately 12 CPU years of previously unused resource.
3. Results

In the following section we compare calculated properties
with observed trends that allow us to ascertain the factors that
differentiate between low and high energy structures. We then
compare the properties of favourable and unfavourable structures
with experiment and finally calculate the Boltzmann factors to
arrive at a small number of structural motifs that we envisage
being the ground state ensemble. With this information, we can
then begin to establish criteria that allow us to distinguish
between favourable and unfavourable configurations without
the need for full geometry optimisation. Similarly, we attempt
to establish whether particular configurations are therefore unli-
kely to be present in a real material.

As mentioned earlier, we have considered the zeolite Mordenite.
A 2�1�1 unit cell has been used to give sufficient T sites to allow
us to simulate a Si:Al ratio of 11, chosen to allow direct comparison
with experimental data [21,22] and also the initial study of Gray
et al. [5] and Gray [6], allowing us to determine whether larger
sampling is of importance. As mentioned earlier we will use the
results obtained in this study to improve our understanding of the
factors relating to structure. Therefore we have currently used only
one constraint, i.e. that Lowenstein’s rule should be obeyed during
the MC configuration generation stage. Equally, as we wish ulti-
mately to improve the efficiency of such calculations, both through
improved configuration generation and by the use of strategies and
drip feeding to improve overall calculation time, here we present an
initial sample of results that provide the baseline with which we will
be able to compare and contrast with in future work to assess the
improvements in methodology.

We have therefore performed full geometry optimisation
calculations on 50,000 configurations. With the data for these
configurations stored in the database we are able to make
detailed analysis of the structural features and compare many
properties. As mentioned earlier we can easily screen unfavour-
able configurations from our final analysis. Approximately 25% of
the configurations did not converge during geometry optimisa-
tion. Failure to converge is usually a consequence of the initial
geometry being too strained for a simple optimisation procedure.

Considering the lattice energy as the primary indicator of
structural stability, we observe that distinct steps (Fig. 3, top) of
approximately 3 eV are formed along the profile. Furthermore we
observe a correlation between cell volume and lattice energy: the
structure becomes unstable as the unit cell volume increases,
which we shall discuss below in terms of the location of cations.

However, such a clear trend is not observed when a more limited

sample is constructed (see Fig. 3, bottom). We have also considered
a number of other geometric properties – e.g. the cation–
framework oxygen bond length – and find similar steps in these
properties, which correlate directly with the steps in lattice
energy. Thus it is clear that we have distinct structure–stability
correlations that are only observed when such large samples are
considered.

Analysing a number of structures from each of the plateau
between the steps it is clear that if the cations are placed in large
channels there is little change in the cell volume, an example of
which is shown on the upper left hand side of Fig. 4. However, if
the MC generated structure has cations in the smaller cavities
within the framework then they are trapped and therefore the
lattice must expand to accommodate them, straining the Si–O and
Al–O bonds and leading to a decrease in stability. The upper right
hand side of Fig. 4 clearly shows the cation induced deformation
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Fig. 3. (top) Cell volumes and total energies taken from the analysis of data from 100 configurations. (bottom) Results from 10,000 configurations with again cell volumes
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of the central channel, which is now oval. Thus, we may now
modify our structure generation algorithm to exclude these small
cavities as viable sites.

From these initial results, we are able to provide crude selection
criteria prior to further analysis. For example, we could exclude all
those configurations with a lattice energy greater than the value at
which we observe a significant step. Similar criteria can also be
made for exclusion based on cell volume and average Al–Na
distances (an indicator of cation coordination). Of course, it would
be more useful to use such criteria to select configurations for
further analysis. Again, such selection is facilitated by our use of a
database for storing the results. Table 1 lists criteria by which we
can construct a detailed analysis, a statistical sample of not only
those configurations that we consider to be a good representation of
the structure but also those that are less representative. Construc-
tion of such extreme samples will allow us to identify any specific
geometric features that generate ‘‘favoured’’ or ‘‘unfavoured’’
configurations. Once identified these additional criteria can be
introduced as constraints in our initial configuration generation
algorithms.

We have then compared the calculated cation positions with
experimentally determined [21,22] cation positions for a material at
a similar ratio of Si–Al, although crucially the experimental cell is
hydrated. 26.9% of the ‘‘favoured’’ configuration cations found
matches with a match radius of 2 Å whilst only 15.1% of the
‘‘unfavoured’’ configurations did so. Close inspections of the experi-
mental unit cell with those of a typical ‘‘unfavoured’’ configuration
and a typical ‘‘favoured’’ configuration suggest that the match is
even better than suggested as sites in the favoured cell where there
is no match found are populated with water in the experimental cell
and empty in the ‘‘unfavoured’’ configuration, indicating that an
even more marked difference between the ‘‘favoured’’ and ‘‘unfa-
voured’’ configuration would be observed if the issue of hydration
was overcome. Hydration effect can be modelled using a continuum



Fig. 4. Top Left—The unit cell of the lowest energy structure found in our study. Top Right—An ‘‘unfavoured’’ structure chosen at random from the second step of Fig. 3.

Bottom Left—Position of cations in experimental unit cell. Bottom Right—A map of the four different T sites of Mordenite [21]. Blue¼Si1, red¼Si2, green¼Si3, yellow¼Si4.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of properties for favoured and unfavoured configurations.

Property Favoured Unfavoured

Lattice energy (eV) r�12,070 Z�12,070

Al–Na average distance (Å) 43.4 o3.4

Cell volume (Å3) o5420 45475

Average cation–O distance (Å) 42.65 o2.65
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model of hydration as illustrated by the case of Goosecreekite [23],
where such a model correctly predicted order aluminium distribu-
tion or explicitly, although the latter requires considerable care and
additional experimental input.

Fig. 5 shows that the ‘‘unfavoured’’ configurations tend to have
a much lower number of cation matches with experiment than
the ‘‘favoured’’ configurations. We can also see a strong correla-
tion between the energy and the number of cation matches in the
‘‘favoured’’ configuration plot. The number of matches reduces to
close to that for the unfavoured matches at higher energies (in the
‘‘favoured’’ plot), which is at approximately the position of the
first step in Fig. 3, bottom, indicating that any higher energy
configurations may not be of any interest for further refinement.

We can further reduce the number of ‘‘favoured’’ configura-
tions by performing a Boltzmann population analysis. The energy
of each of the configurations is calculated relative to the lowest
energy configuration. These relative energies were then used to
determine a probability of the configuration being populated at a
temperature of 473.15 K (chosen as typical of synthesis condi-
tions) by way of a Boltzmann distribution:

P¼ ½expð�ErelðnÞ=kTÞ�=
X

expð�ErelðnÞ=kT

ErelðnÞ ¼ En�EG

where EG is the lowest energy configuration.
Those configurations that had a probability greater than 5%

were then further analysed as they were considered to be
structures most likely to correspond to those synthesised experi-
mentally. The result obtained for the cation match for these
structures was much greater than the average of all the ‘‘favour-
able’’ structures, 41.7% and 22.9% cation matches per unit cell,
respectively. We also saw an improvement in the agreement of
the NMR data to that of experiment, both with respect to the
complete set of structures that have converged with an energy
lower than �12,073 eV and the calculations carried out by Gray
et al. [5] and Gray [6] on a smaller set of data. Agreement with
T-site occupation is reasonable, see Table 2, but we would not
anticipate reproducing the experimental data more accurately as
the models considered are conceptually different, as now
discussed.

As we are now sampling quite extensively, we might expect
disparity between calculation and experiment to reduce, and
indeed the differences in T site occupation between experiment
and calculation are now reduced compared to Gray et al. [5] and
Gray [6]. However, first we must ensure that we are comparing
similar quantities. Our calculations show that T site occupations



Fig. 5. Comparison of calculated sodium positions with those from experiment for (top) unfavoured and (bottom) favoured configurations. Note that most stable

configuration in each is at the left side of the x-axis. It is clear that the number of cations located at experimental sites is higher in the more stable configurations.
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of the top six structures vary substantially: each of the config-
urations has a calculated population at 200 1C of between 5% and
14%. If these six structures are all populated in experiment, we see
an averaging in the experimental T-site occupation. Thus lack of
agreement with experiment for these parameters is not necessa-
rily indicative of poor methodology, rather the experimental data
cannot be replicated computationally as the experiment and
calculations consider different scenarios. In the crystal structure,
the configuration is determined by the average of all configura-
tions populated at the conditions imposed, whilst the calculations
consider each configuration exclusively. The cation positions are
therefore ‘‘smeared’’ in experiment, while in calculations we do
not allow the possibility of unit cell to unit cell content change as
would be anticipated if many configurations could be populated.
However, the main differences that remain are likely to be a
limitation of the model considered here. We have constructed and
calculated the properties of anhydrous unit cells: crystals of morde-
nite form in the presence of and contain significant quantities of
water. Including water would make the process significantly more
computationally intensive. However, some of us have shown how
approximate models of water – modelled only as a dielectric screen –
can allow aluminium distributions in zeolites to be accurately
obtained [23]. Such an approach may be valuable here.

By performing the calculations on 50,000 configurations we
are now in the position to discount sampling as being the root
cause of the discrepancy between experiment and the work of
Gray et al. [5] and Gray [6]. It can be seen that we improve the
agreement of the local structure between calculation and experi-
ment with both the ensembles of configurations, labelled
‘‘�12,073 eV set’’ and ‘‘Boltzmann’’ in Table 2, but the improve-
ment is small and the same trends persist with 4Si0Al being
slightly overpopulated in calculations compared to experiment at



Table 3
Comparison of structural properties for the 6 lowest energy structures and

‘‘unfavoured’’ structures.

Property Average of 6 lowest

energy structures

Unfavoured

Lattice energy (eV) �12,079 Z12,068

Al–Na average distance (Å) 3.5 o3.4

Cell volume (Å3) 5461 45475

Average cation–O distance (Å) 2.69 o2.65

Table 2
Comparison of NMR and T-site occupations for computed sets and experiment.

The NMR notation refers to the T-site neighbours surrounding a given Si. Thus

3Si1Al refers to a Si site which has as nearest neighbour T-sites, 3 silicon an 1

aluminium.

Quantity Experiment

(%) [22,23]

Gray et al. [5]

and Gray [6] (%)

Lowest

energy seta (%)

Boltzmann

(%)

4Si0Al 63.3 70.6 68.2 67.8

3Si1Al 34.2 25.6 28.4 28

2Si2Al 2.5 3.7 4 3.8

1Si3Al 0 0.1 0.1 0.4

T-site 1 13 12 13 14

T-site 2 12 11 11 10

T-site 3 29 26 24 34

T-site 4 21 26 16 13

a The lowest energy set are those configuration with a lattice energy lower

than �12,073 eV discussed in the text.
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the expense of the 3Si1Al configuration. When we turn to the long
range structure as shown by XRD experimentally and defined
here as the T site occupation we can see that the best agreement
between calculations and experiment is that of the 12,073 eV set
with both our new sites correctly favouring T3 over T4, which was
not observed in the study of Gray et al. [5] and Gray [6]. We now
correctly order the T site occupation with respect to experiment
although T4 is out by 8%.

The other main features noted to be common in all of the six
lowest energy configurations are the positions of the cations,
which exclusively populate the larger cavities of the mordenite
framework. Structures with lattice energies only slightly higher
than these configurations showed some cations located in the
(experimentally less populated) 8-membered ring channels while,
in contrast, the high energy configurations showed an even
greater tendency for the cations to be found at these sites.
4. Discussion and conclusions

It is of interest to compare the structural properties that make
up the 6 lowest energy structures and compare to those of the
unfavoured set, shown in Table 3.

While we certainly see trends in properties the analysis of
certain configurations picked at random from amongst the most
stable configurations that would suggest that there are certain
ranges of properties that can be imposed on the starting config-
uration, we must be careful not to avoid discounting possible
configurations of interest. The complexity of the system means
that local distortions can be accommodated and still lead to
population of configurations with individual descriptors outside
the ranges shown in our trends.

Before we can really influence the configuration generation
with knowledge learnt in these studies we also need to step back
to the starting structure. Again, it will be counterproductive if we
eliminate a configuration from our ensemble because of proper-
ties in the starting structure that then change dramatically in the
course of the simulation. It is, however, very clear that all stable
structures have cations in the large channels and not in the
8-membered rings. We are therefore currently adding further
functionality to allow the exclusion of configurations where there
are a large number of cation–oxygen contacts, characteristic of a
cation in a confined position. Fixing cation position to be in large
rings is a clear parameter and there is no question of cutoffs or
ranges of values with the arbitrariness that this brings. The data
we have shows that if the configuration is stable then the cations
are only found in the larger rings, in agreement with experiment.
The approach adopted in this paper has general implications:
we have developed an understanding of the important structural
constraints imposed on the structure using tools, both software
and hardware, at our disposal and deploying them in a novel
MC/EM hybrid scheme, allowing us to cover a vast phase space.
As the deployment is over previously unused low specification
compute resource, it provides a very low budget method of
simulating in excess of 50,000 unit cells (each of which consists
of 296 atoms) and will provide an effective procedure for model-
ling materials exhibiting partial site occupancy—a long standing
challenge in solid state modelling.
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